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Small Strain Accompanied by 11tdei.. ltt ,n

by P. M. Naghdi and L. Vonf,' np,•o

Abstract. This paper is mainly concerned with the construction of.a theory
of material behavior with infinitesimal strain accompanied by moderate
Srotation. After introducing a definition for moderate rotation and
establisning a number of theorems pertaining to its properties, precise
estimates are obtained for the (local) moderate rotation and related kine-

:, •matical results in terms of infinitesimal strain. For motions which result
in small strain accompanied by moderate rotation, the invariance of
constitutive equations under arbitrary superposed rigid body motions is
discussed with particular reference to an elastic material.
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1. Introduction

In order to state clearly the purpose of this paper and to motivate the

developments that follow, consider first the manner of construction of an

infinitesimal theory of deformation. In constructing such a theory, if as

usual it is assumed that the displacement gradient is small, then both the

strain and the (local) rotation are small also. On the other hand, if only

the strain tensor is assumed to be small, then the rotation tensor is not

necessarily small. It is then of interest to ask whether or not any con-

dition imposed on the strain field would suffice to ensure the smallness

of the rotation also. More generally, suppose it is desired to have the

rotation moderately large in some sense. Is it then possible to restrict

Nift the strain field so as to ensure that it is accompanied by moderate

rotation?

Some insight into the above questions is provided by a well-known

result of the infinitesimal theory which states that the gradient of the

infinitesimal rotation can be expressed in terms of the gradient of the

strain field (see for example Sokolnikoff, 1956, p. 27). It is not dif-

i'icult to see that some corresponding result should exist even when the

deformation is not infinitesimal. Indeed, in the context of a finitely

deformed body, the deformation gradient tensor F can be expressed as a

product of the (local)rotation tensor R and the stretch tensor U which also

determines a measure of strain such as the relative Lagrangian strain E.

That there must exist some connection between the gradient of the stretch

U (or the gradient of the strain E) and the gradient of the rotation R

becomes evident when one recalls the compatibility condition that F must

satisfy. The main purpose of the present paper is to derive a representa-.

tion for the rotation and deformation field directly from the strain, which



can then be used to estimate the magnitude of R in terms of the magnitude

of U or E. Results of this kind are -'f interest in various contexts and

espec~ially for materials undergoing deformation in which the strain and

rotation are not necessarily of the same orders of magnitude. In fact, in

a number of theories for special bodies, such as those for shells and

rods, there are circumstances in which the motion results in small strain,

while the rotation and the deformation may be large or moderately Large.

Motivated in part by the remarks made in the preceding paragraph,

most of the paper is concerned with the development of a Procedure for the

construction of a theory of infinitesimal strain accompanied by moderate

rotation, although the procedure is applicable to other situations in which

the strain and the rotation may be of different orders. Thus, after

introducing a geometrically appealing definition for moderate rotation

and establishing a number of relevant theorems pertaining to. its properties,j

estimates are obtained for the angle of rotation and the moderate rotation

tensor and these are eventually expressed in terms of infinitesimal strain.

These and related kinematical results are then put in a properly invariant

form, and the invariance of constitutive equations under arbitrary superposed

rigid body motions is discussed in the case of an elastic material under-

going small strain accompanied by moderate rotation. Although throughout

the paper use is made of the direct (coordinate-free) notation, which often

allows the results to be stated in their simplest form, on occasions we

also employ the component forms (at least partially) of the vaxious equa-

tions since these are more convenient in explicit calculations. A brief

account of the notations used and some mathemati,ýal preliminaries is given

at the end of this section and additional notations and mathematical

terminology are collected in Appendix A.
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The problem of the determination of the rotation tensor R from r.

strain tensor, and the connection between them, has a long history that

dates back o Cauchy. A detailed account of the subject can be found in

sections 34-38 and 55-57 of 7'ruesdell and Toupin (1960). Truesdell and

Toupin (1960, p. 276) also discuss in some detail a measure of rotation --

called mean rotation -- introduced by Novozhilov (1953) and use this in

their development of a theory of infinitesimal strain and infinitesimal

rotation (Truesdell and Toupin 1960, p. 305). More recently, in the con-

text of finite deformation, the problem of the determination of the rotation

tensor R from the strain tensor has been discussed by John (1961) and by

Shield (1973). In particular, Shield has derived a useful representation

of the integrability relations for finite strain in a Euclidean space, and

has further shown that for two-dimensional deformation the rotation and

deformation field can be determined directly from the knowledge of strain

by a line integral.

1.1 Scope and outline of contents

After collecting some kinematical and kinetical results in section 2,

for clarity and ease of reference we include a sketch of the derivation of

the differential equations for rotation R in section 3. Since the presenta-

tion of this development differs somewhat from that given by Shield (1973),

one or two of the details are collected in the first part of Appendix B

(between (Bl) and (B4)) whore a correspondence with Shield's (1973) main

results are indicated. We also take this opportunity to include in

section 3 two elementary kinematical theorems concerning the rotation R

and the deformation gradient which are utilized later in the paper.

We begin section 4 by defining in precise terms four measures of

smallness denoted by fe •oi, 2 ,£} and associated, respectively, with

0 3
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strain, strain gradient, rotation and rotation gradient [see the expressions

(4.1)-(4.2) and (4.5)-(4.6)]. We then observe the conditions under which these

four measures can be related [see (4.7)] and go on to show that the rotatio.n

gradient is of the same order of magnitudP as the strain gradient, i.e.,

C3is of the same order as el [see (4.17)]. Under the additional assumption

that the rotation tensor is the identity tensor at some material point in

the body, we prove in subsection 4.1 that the rotation tensor is of the

same order of magnitude as the strain gradient, i.e., e2 is of the same

4 order as E [see (4.26)]. Later, making use of a further assumption that

rel'ates the two measures of smallness eand cl' we express the rotation

tensor and all other kinematical quantities in terms of e or equivalently

th-:ý infinitesimal strain.

In the second part of section 4, we introduce two separate definitions:

One for (1) infinitesimal strain accompanied by infinitesimal rotation

(Definition 4.1) and another (2) for infinitesimal strain accompanied by

moderat'j rotation (see Definition 4.2). Although our main objective here

is to deal with the latter, we find it instructive to prove a number of

results in subsection 4.2 pertaining to the infinitesimal theory of motion.

The remainder of section 4 'subsections 4.3 and 4.4) deals entirely with

the case of infinitesimal strain accompanied by moderate rotation. In

Theorem 4.3, we essentially prove that if the strain is of O(E ) and R is

a moderate rotation, then the relative displacement gradient is of O(F'Y).
~0

V In a subsequent Theorem 4.4, with the help of a known representation for R

in terms of angle of rotation e and the results stated in the preceding

paragraph, we estimate the order of magnitude of R in terms of the

infinitesimal strain We also obtain in subsection 4.3 expressions for

the deformation gradient F and the relative displacement gradient H when

4.



the motion is such that the strain is of O0C ) but is accompanied by
0

moderate rotation of 0(c ).
0

In a recent paper, Casey and Naghdi (1981) have constructed a

properly invariant theory in which, apart from superposed rigid body

motions, both the strsin and rotation (and hence also the relative

displacement gradient) are infinitesimal and have further shown that in

this infinitesimal theory of motion the constitutive equations, as well

as the equations of motion, are all properly invariant under arbitrary
(not necessarily infinitesimal) superposed rigid body motions. In the
latter part of section 4 (see subsection 4.4), by using the procedure of

Casey and Naghdi (1981) we remove from all motions the translation and

rotation at any particle Y of the body, thereby rendering all kinematical

quantities (including the infinitesimal strain) properly invariant under

"superposed rigid body motions. Finally, in section 5, in a manner similar

to that of Casey and Naghdi (1981) we briefly discuss the invariance

properties of the constitutive equations for small strain accompanied by

moderate rotation and further demonstrate in Appendix C that, as in the

case of the infinitesimal theory, for the theory under discussion the

particular choice of the particle Y is again immaterial in effecting the

properly invariant nature of the results.

1.2 Notation and mathematical preliminaries
We close this section with a short glossary of notations and some

mathematical terminology that will be needed in what follows. Any linear

mapping from V, the three-dimensional translation vector space associated

with the Euclidean point space C, into V will be called a second order

tensor. The trace and determinant functions of secund order tensors will

be denoted, respectively, by tr and det. The transpose of a second order

5.



T
tensor T will be denoted by TT, while the inverse of T if it exists will

be denoted by T-. The usual inner product on V is written a " b for any

two vectors a,b G V and the (induced) Porm, or magnitude, of a is given by

Ilail = (a- a) Z. The set of second order tensors can be provided with an

inner product A B = tr(A TB) and a nom 'A1 - (A A) for any second order

tensors A and B. We note that the definition of the norm of a second order

tensor satisfies the usual properties of the norm, i.e.,

11AII > , and =0 if and only if A= 0

I laAll j llA i l , 11i

A 1< 1 j + lnBIi

for any second order tensors A and B and for any scalar c.Further, it

can be shown that

i• JA all < IAIIIllall (1.2)

for any second order tensor A and any vector a. In addition, for any

second order tensors A and B, we have

the tensor product aeb of any two vectors a,b E V is the second order

tensor defined by (aQb)v= (b• v)a for every vector v. We recall the

formulae tr(a'9b) = a. b, (a~b)T=bQa, (a~b)(c@d) = (a d)(b • c),

(a~b) . (c~d) =a . c b *d, which hold for all vectors a,b,c,d E V. In

addition, we note that

llaQzjhl = hl aii bhl (1.4)

for all a,b E V.

6.
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2. Some preliminary kinematical and kinetical results

Let X be a particle of a body 2 and denote by X and x the position

vectors of X in a fixed reference configuration K and in the current con-
-. 0

figuration K, respectively. A motion of 2 is the mapping X which assigns

the position vector x=X(X,t) to the particle X at time t. In the con-

figuration K0, let 9 occupy a region A° embedded in a 3-dimensional

Euclidean space e and denote the boundary of AR° by 3A o. The image of

AR in K will be denoted by 9R with boundary ý A. We assume that at each

fixed t, the mapping X of AR° into AR possesses a smooth inverse denoted

S00byx- X
-.

Let'F = Grad X be the deformation gradient relative to the configura-

tion K and recall that det F> O. Then, by the polar decomposition theorem,

F can be decomposed in the form

F R U , (2.1)

where the right stretch U is a symmetric positive definite second order

tensor, the (local) rotation R is a proper orthogonal tensor satisfying

R'R= RRT I , det R= 1 (2.2)

and I stands for the identity tensor. The right Cauchy-Green measure of

deformation C can be represented in the forms

T 2
C = FTF = U (2.S)

and the relative (Lagrangian) finite strain tensor E is given by

E = 12(C-I) (2.4)

A region is regarded here as a nonempty connected and compact subset of C
having a piecewise smooth boundary.

t Definition of the gradient of a vector function is given by (A4)I of

Appendix A.
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In order to express certain expressions in component form, it is

convenient to employ two fixed right-handed orthonormal bases {eA 1,

(A--1,2,3), and {e.}, (i= 1,2,3), in V, the former basis being used for
vector fields defined on the region A and the latter for vector fields

defined on AR. The convention of summation over repeated Latin index

will be employed. Thus, for example, we write X- XAeA, and x= x.e..

FuTthermore, a second order tensor A may be represented by A. .e. e.,

AiM e~i M, or NeMOe as appropriate, where A.. =e.- A e. =A- (el eQ),

etc.

The relative displacement u and the relative deformation gradient

d• fined by

u -- -X ,(2.5)

~rid

H =F- I =Gradu u Q) e (2.6)
-. - -,K ZK (26

where a comma stands for partial differentiation with respect to the

coordinate XK. The strain tensor E can be expressed as

E = '2(H+HT +HTH)

= ½(ULK + + u ),KUMLeL G K (2.7)

Also, it is easily seen from (2.4) that Grad C=2 Grad E or equivalently

with the use of (AS) 2 ,

C -2E = (UU) =uu + u2.)~,K ~K ~ ,K ~~,K+ ~,K

A motion X is said to differ from X by a superposed rigid body motion

if and only if

++
X (X,t÷) Q Q(t)x(X,t) +a(t) , t t+a (2.9)

.S.8.



for some proper orthogonal second order tensor-valued function Q(t) of time,

some vector-valued function a(t) of time and some real constant a. The

configuratiun of 9, at time t÷ in the motion X+ will be denoted by K+.

The deformation gradient F (X,t+) calculated from (2.9) is related to F by

F÷ Q(t)F (2.10)

Then, it can be easily verified from (2.3), (2.4) and (2.1) that

C C U U E E+ E Q(t)R (2.11)

The relative displacement field associated with X is u = x -X and its

gradient H÷-- Grad u in terms of (2.6) is given by

HS =QF-I =QH+Q-I (2.12)

Thus, C,U,E are unaltered under superposed rigid body motions, while R is

unaltered apart from orientation . The displacement gradient H, however,

is neither unaltered nor unaltered apart from orientation under the

transformation (2.9).

For later reference, we recall here an exact representation for the

rotation tensor R, namely

R =I +ý+T ,(2.13)

where

For the motivation and the precise meaning of this terminology, see
Green and Naghdi (1979).

jee Truesdell and Toupin (1960, p. 2 0, Eq. (37.17)).
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= .•1= = (i- cos O)(w0® z-I) = (1-cos e)O(JKWL- 6 KL eK eL

(2.14)

'. =-T' =-sin 0 E p =-sin 8 £KLMlIeK L e

In (2.14)1,2) 6 KL are the components of the identity tensor I,

= KLMeK e e e is the permutation symbol in 3-space, v =pte is
4L! -L M - !

the unit vector in the principal direction of R that is associated with

the principal value l,and 6 i'tpresents the angle of rotation calculated

from the relationship

tr R= 1 +2 cos 8 , -T<TeO<T (2.15)

We introduce now some kinetical quantities needed in the development

of section S. Thus, with reference to the motion X, let p=p(X,t) be the

mass density in the configuration K, n the outward unit normal to the

surface D9R, t =t(X,t ; n) the stress vector acting on this surface and

K vT=T(X,t) the associated Cauchy stress tensor. The corresponding quantities
+in the configuration K will be denoted by p ,n ,t and T+, respectively.

+ +

We recall that under the superposed rigid body motions (2.9), p and n

transform according to

p + Q(t)n (2.16)

and adopt the usual assumption that t+ for he motion X+ is related to t

by

t =Q(t)t (2.17)

It then follows from the relation t= T n, (2.16)2 and (2.17) that

ST+ Q(t)T QT (t) (2.18)

10.
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3. Differential equations for the rotation tensor

In order to examine locally the deformation of the body .2, consider a

material line element dX at X in the reference configuration Ko. As a

result of deformation, dX is mapped into a line element dx =F dX at x in

the present configuration K. Since the space e is 3-dimensional, in order

to determine the deformation of an arbitrary material line element it will

suffice to consider the deformation of three mutually orthogonal line

elements dXM, namely

- ..

= 04, (M= 1,2,3) (3.1)

Let the magnitudes of d XM and dxl be denoted by dSM and

dsM, respectively, and introduce the unit vectors KM in the directions of
d~i and the unit vectors kM in the direction of dx,,. Hence, the three

unit vectors KM (M= 1,2,3) form an orthonormal basis which, without loss

Sin generality, will be identified with the orthonormal basis (e:4} in K•o0

in general, the line elements dX,~ undergo both stretch and rotation and

the ratios (dsl/dSl, ds 2/dS 2 , ds 3/dS 3 ) denoted by XM (M= 1,2,3) are called

the stretch of the line elements. The above observations may be sununarized

as

dsM
d1 = • (no sum on M) (3.2)

It follows from (3.1) and (3.2)123 that

dx\" ei = Fill dSM - XM kt 4i dSM (no sum on M) (3.3)

where k i are the components of the unit vector kM referred to the

orthonormal basis fei} in the current configuration K and FiM are the

components of F referred to the basis fe G e i.e.,4i -M

F = F e .e.M ' ,M F_.eM = F !M (3.4)

11.
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In view of (3.4), the results (3.3) nmay also be displayed as

It = hulM b noe /XM (no sum on M) (3.5)

It should be noted that since F is invertible, I4 are linearly independent

and form a basis. Moreover, MM can be interpreted as the image of the

material basis K (or eM) in the configuration K. It is clear that the knowledge

of the images of K& at every point gives full information about the

components F im= !i '•M" Gi'en F (or the components FiM), the necessary

and sufficient conditions for the existence of a deformation function

whose gradient is F are the compatibility conditions

~ T
(Grad F) = Grad F or F F (3.6)

r iK,L iL,K(36

In terms of MM the conditions (3.6) can also be written as

. "(3.7)
4M, L otL, K

Clearly the inner product of NK and ML gives the Cauchy-Green measu.re, i.e.,

KL iK iL iKei jL~j =K * (3.8)

and it is seen that the components of the metric tensor associated with the

material basis M are C_K KL'

Given CKL, it does not necessarily follow that there exists a deforma-

tion function X whose gradient F satisfies (2.3)I. Thus, we must ask the
1,

following question: If C is specified at every point of the body, can we

find F (or equivalently MK) derivable from X such that (2.3)1 or (3.8)

are satisfied? To this end, we proceed to express the derivative of MK in

terms of the derivatives of C. First, we differentiate (3.8) with respect

to and obtain

The definition of the transpose in (3.6)i is given by (A2) 1 of Appendix A.

12.



CKLM = MK L ,M K,M 4-K ML,M (3.9)

Next, by suitable combination of expressions of the type (3.9) and with the

help of (3.7), the derivative of M can be expressed in terms of partial

derivatives of components CKL alone, i.e.,

MM =FiF = c +C - )(.0M K FK,M iK,M LM,K LK,M" CKM,L (3.10)

or equivalently in coordinate-free notationtt

TT 1 T3]
F Grad F = [(Grad C) + Grad C- (Grad Q . (3.11)

Thus, if there exists an F which satisfies (3.6) and (2.3)1, then F must

satisfy the differential equations (3.10) or (3.11). Clearly, the dif-

ferential equations (3.10) or (3.11) are the necessary conditions for the

determination of F from the knowledge of C. The converse, proved inI
*

Appendix B, is : if a field F satisfies (3.10), then (2.3)1 holds and further-

more a motion X exists whose gradient is F.

Since the stretch tensor U is uniquely determined by C, we may use

(2.1) to obtain the following differential equations for the rotation R

in terms of U:

RT Grad R=A , C3.12)

where A is a third order tensor given by

•The notations TI,T2 and T3 for the transpose of third order tensors is
introduced in (A2) of Appendix A.

This sufficiency argument is discussed in the first paragraph of Appendix B.
A sketch of the derivation of the differential equations (3.12) or equiva-
lently (3.14) is given in the second paragraph of Appendix B leading to (B4).

13.



TI" T3
SJ =-J u'[Grad U- (Grad U)

+ ((Grad U- (Grad U) 1u T1

+ (U" [Grad U- (Grad U31 } (3.13)

Thus, if R exists such that (2.1) holds, then it is necessary that R satisfy

(3.12). Conversely, if a proper orthogonal tensor R is a solution of (3.12),

then by reversing the procedure used in obtaining (3.12) from (3.10), it can

be shown that the tensor F=-R U satisfies (3.10) and the existence of a

deformation function X is ensured.

In the remainder of the paper, it is often more convenient to write

"•."• (3.12) as

RTR = A , (K 1,2,3) (3.14)

!,K .K

where each AK (K- 1,2,S) is a skew-symmetric second order tensor such that

!;A A T Je
-..K " K IK

',-K u,Ku L _K )uiL

- e )U + LL

(e 1 (3 ))

,,_ L _K eKU L _K eL)U

- u-(e 0e e)U U L'}(,S

It should be noted that the right-hand side of (3.13), or equivalently

(3.15), involves only the stretch U and its gradient.

Integrability conditions for the existence of a solution R to (3.14)

have been discussed by Shield (1973) based on a paper of Thomas (1934). A

brief statement of these conditions in the context of the present paper is

given following (B4) of Appendix B.

In the rest of this section, we state two theorems, the proofs of

14.



which utilize the representation (3.14) or some of the preceding results.

The first of these pertains to uniqueness of the rotation tensor to

within a rigid body rotation and may be stated as

Theorem 3.1. Let a stretch field U derivable from a motion X exist

such that the compatibility conditions (3.6) are satisfied and let R1 and

R2 be any two rotation tensors satisfying (2.2). Then, R and R2 cor-

responding to U are solutions of (3.14) if and only if they differ by a

rigid body rotation.

Proof. We first prove the necessity. Suppose that R and R2 are

any two distinct proper orthogonal tensors, each of which satisfy (3.14)

corresponding to the same stretch, i.e.,

RTR =A -0, uA (3.16)
T

Consider next the space derivative of the product R1RT, namely

T1 T

-0 , (3.17)

where in obtaining (3.17)1 the first term has been premultiplied by
IV

RT1Rj [ and the second term has been postmultiplied by R22 ,I and where

use has been made of (3.16)1,2 and (3.15)1. It follows from (3.17) that

the product R R must be a second order tensor which is independent of

position but may be a function of time. Since each of the two tensors R

and R is proper orthogonal, the product R1 R• is also proper orthogonal,

say Q (t). Thus,we may conclude that R RT-go or equivalently

!l 2J2 (3.18)

15.



Hence R and R differ at most by a proper orthogonal tensor function of

time corresponding to a superpose%1 rigid body rotation. To show that the

conclusion reached '.s also sufficient, we only need to replace R in (3.14)

by QoR and the theorem is proved.

An immediate consequence of Theorem 3.1 is the following

Corollary 3.1. Corresponding to a given field of deformation C, the

deformation gradient field F can be determined to within a rigid body

rotation.

The proof follows at once by recalling (2.1) and noting that corresponding

to a given C the tensor U is uniquely determined by (2.3)2. A proof of-

this result was apparently first given by Shield (1973, p. 484) who employs

a different procedure than that of our Theorem 3.1 and does not make use

of (3.14).

In the statement of Theorem 3.1, the existence of a motion X whose

stretch field is U was assumed. Suppose instead that a field U is prescribed

as a function of X. It is then natural to ask under what conditions such

a stretch is the gradient of some deformation function X. In other words,

what restrictions must be placed on U in order to guarantee that the

deformation gradient is of the form J

F a U or FiK diLULK . (3.19)
iK iLL

This leads us to state the following

Theorem 3.2. The restrictions
Tl

Grad U- (Grad U) or UKL, UK•IL (3.20)

on U are both necessary and sufficient to ensure the existence of a motion

whose gradient is symmetric and hence corresponds to pure stretch.
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Proof. Suppose d motion exists whose gradient satisfies (3.19).

Then, the compatibility conditions (3.6) imply the restrictions (3.20) as

necessary conditions for the existence of X. To show sufficiency, assume

the restrictions (3.20) on U. With the use of (3.20), it can then be shown

that the right-hand side of (3.15) vanishes identically and hence AKu~0.

Further, by (3.14) we have RTR K=0. This, in turn, implies that R j=0

since R is nonsingular. Hence, R must be a function of time only cor-

responding to a superposed rigid body rotation, say Q'. Thus, a motion

rwhose gradient is Q F is sufficient to satisfy (3.19) and the

theorem is proved.
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4. Kinematics of deformation with moderate local rotation

We are concerned here with a kinematical development in which the

Lagrangian strain is ini'nitesimal but is not necessarily accompanied by

infinitesimal rotation. To make these notions precise, in a manner

similar to that of Casey and Naghdi (1981), we first define a measure of

smallness of strain by the nonnegative real function§

E - -(t) - sup IIE(X,t)Il , (4.1)
0 0

where sup stands for the supremum (or least upper bound) of a nonempty

bounded set of real numbers. If h0 (E) is any scalar-, vector-, or tensor-

valued funczion of E defined in the neighborhood of E = 0 and satisfying

the condition that there exists a nonnegative real constant C such that

(E n asE (n
11h 0() 0~ 0as . 0, then we write ho -0( ) as +o•0.

The statement E=0(c ) as +0 does not imply any restriction on the

W space or time derivatives of E. In particular, it is possible for

Grad E-E KeK or equivalently EK to bs finite while E itself remains

small. To deal with such circumstanceý, intr'oduce a second measure of

smallness by a nonnegative real function

S= I l(t) = max sup 1EKK(X,t) I , (K= 1,2,3) . (4.2)
K Xe E 9

- 0

If hl(EK) is any scalar-, vector-, or tensor-valued function of Grad z

§In the paper of Casey and Naghdi (1981), a quantity corresponding to e
was defined in terms of the displacement gradient rather than the strain.

In writing (4.2), for simplicity we have used the norm of the second order
tensors E K defined in section 1. It is, of course, possible to define
el in teris of Grad E, but this requires also a definition for the norm
of a third order tensor which is not introduced in section 1 or
Appendix A.
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defined in the neighborhood of EK= C E0 satisfying the con-

dition that there exists a positive real constant D such that

llh (E l < D as e 0, then we write h1=0(,n ) as e-,0. Further, if

there exists a nonnegative constant f such that

ek < •oe with k,k integers (4.3)
1 0

then it can be shown that

"11h (EK) 11 < CDC1knk ) . (4.4)

Provided that (4.3) holds, the last result implies that any function

hl(EK) of OCE as ci+0 is also of o(E n/k) as e+o0.

We now introduce two additional measures of smallness, one associated

with the rotation tensor and another with its gradients. Thus we define

the measures of smallness e2 and £3, respectively, by the nonnegative

real functions

e2 : £ (t) " sup IIR- 11 (4.5)2 2 X e A
- 0

and

EC (3 ct) max( sup IIR II , (K 1,2,3) (4.6)
K X eR ~,KII

If h2 (R-I) is any scalar-, vector-, or tensor-valued function of R defined

in the neighborhood of R= I satisfying the condition that there exists a
n

positive real constant D such that 11h 2(R-I)1 < D2£2 as r2÷o, then we

write h 2 =O(,2) as £2-*0. Similarly, if h (R K) is any scalar-, vector-,

or tensor-valued function of RK (Ka 1,2,3) defined in the neighborhood

The details are discussed following (BS) in Appendix B.
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of R = 0 satisfying the condition that there exists a positive real

constant D such that Ijh (R,K)lt < D3en as c3DO, then wc write

h 3 =0(,n) as s3-00. Further, the four measures em, (m= o,1,2,3) can

be related if there exist nonnegativeconstants Cm, m,n=o,l,2,3,

such that

e m < E z with k,Z integers , (4.7)

and then similar to (4.4) it can be shown that any function of O(E ) as

e + 0 is also of 0(nu/k ) as e 40.m nn

Since R is a proper orthogonal tensor, it follows from the definition

of the form of a second order tensor that

2 I)T
LR- Il = tr{(R-I) (R-I)) 2 2(3-tr R) (4.8)

Recalling the expression for tr R in (2.15), which implies that tr R

satisfies the inequality -I < tr R < 3, it follows from (4.8) that

o0 < IR-Ijj < 8 and consequently the measure of smallness e2 in (4.5)

is bounded from above by 2/i, i.e., e2 - 2v-.

A solution of (3.14) involves both U and its derivatives U K" In

order to accommodate the strains and strain gradients of different orders

of magnitude, we first express U in terms of E and E Remebering that

by (2.3)2 and (2.4) the stretch U may be regarded as a function of E, from

the Taylor expansion of U(E) about E = 0 follows

E2-L 1(2 E 3 (4.9)

A statement of Taylor's formula of the form (4.9) is given by Theorem 8.14.3
of Dieudonne (1969, p. 190). Since all the spaces considered here are real
Euclidean spaces and since all finite dimensional Euclidean spaces are
Banach spaces, the theorem in (Dieudonng 1969) is directly applicable.

20.



and by differentiation we have

U =E ½(E + EE

+ ,Kj .. ,K-. + I,] + EE (4.10)

where in writing (4.9) we have also used the fact that U= I at E =0. Before

proceeding further, in the context of the classical infinitesimal

kinematics, we recall the approximate formulae for U,C and their inverses,

all estimated in terms of the infititesimal Lagrangian strain, i.e.,

E = O(e) , U= I+E = I+O(eo) , U"I -~' --O(o)
(4.11)- - - -o- C' -(-o - -•0

C I+ 2E I I+ (e) , C = I- 2E = I-o( as e 404
- - -0 - 0' 0

Now suppose that E=O(Eo) as eo÷0 in (4.10) but as yet impose no restric-

I tion on EK It follows that each term of the last bracket, in (4.10) is

2 2"of O(C0) and, to the order e, the expression for U can be approximated

by

U B ~(E + BE) E +O , ÷as C 0 (4.12)

UK EK •EK+ EE K ..,K o 0

We observe that with U and UK given by (4.11)2 and (4.12), it can be

verified that the expression (UU) 2 EK and thus (4.11)2 and (4.12)

satisfy (2.8)2 to the order co. Introducing the approximations (4.11)

and (4.12) on the right-hand side of (3.15), we obtain

A =~T = e-(e9e)E
...K _K L eK~ ;! (eL _K)EL

+ {,E E- - 2[EE(e 9 e)- (e 0 eK)E,
_' H,K __, ..K -L L E

+ 2[E(e L( e K)EL- EL L(e K e L)E]} (4,13)

where terms of 0(e2) have been neglected.
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4.1 Estimate for the angle of rotation

With the help of (1.3), we can estimate the norm of AK from the

expression (4.13):

11AKI • I,(eKQ eL) 11 + 11 (e 0 eK) EL 11 + 112 KE

÷ fEE ,i +*2 IIEE (eK0e) + 2 ll(e ee FEj

11)i + (eLgeK)E,L! +2 1,L (e K' OeL) EII~~.

L 2K 1,11 +2

< 6c 1 +13Co 1 = I( 6 +13co) (4.14)

Hence, given eo it follows from (4.14) that

A = (e1) as e1 "l 0 , (K 1,2,3) . (4.15)

rrom (3.14), which can be written as R,= ,K' the norm of R is given by"",K --.K

=fR tr{(R R,)KK (4.16)

By (4.16) and (4.14) we also have <R K" el(6+ 13Eo) and it follows that

the order of magnitude of R is given by-OjK

R = 0(1) as - 0, (K= 1,2,3) (4.17)

In terms of (4.7) with m= 3 and n= 1, the estimate JJR 11 noted above

implies (4.7) with k =Z= 1, and we conclude that quantities of 0(e 3 ) are

also of 0(I as c:i0. It should be noted that although (3.14), which

involves R, is used to estimate the order uf magnitude of RK. the

result (4.17) is independent of the measure of smallness C

2' 4
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In order to assess the effect of E on the order of magnitude of~K

the angle of rotation, we now use the representation (2.13) to calculate

the left-hand side of (3.14):

RTR. = 1-cos e

+ sin e(1- cos 6){( K x P)®•• 0• KW

-e ,KeL (jxe,) - sin e cos e (,KXeL) e (4.18)

The above expression involves both the angle e and its gradients. In order

to estimate the order of magnitude of the latter quantities, we proceed to

isolate the term containing eK in (4.18). To this end, we first observe

that if the directions pK vanish, every term in (4.18) is zero except the

one containing e namely - KeL(xeL). Next, let aK (K= 1,2,3) be awL
set of unit vectors along the directions of p, K# 0 and choose a second set

of wuit vectors Y-K (K= 1,2,3) such that for each K the set of unit vectors
*

i •K,•K) form a right-handed orthogonal triad . Then, by considering the

scalar a •K" TR (no sum on K), it can be verified that"

Our preference for the order of the unit vectors in the right-handed triad

(ý,'K,&K) is simply because this leads to a positive sign on the right-hand
side o? (4.19). Alternatively, a negative sign would result on the right-
hand side of (4.19) if we had chosen the set ('P,aK,YK) as a right-handed

orthogonal triad.

Details are given following (BlO) in Appendix B.
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ýK RT',K -'' K• •'K +0 K (no sum on K) (4.19)

From comparison of (3.14), (4.15) and (4.19) we may now conulude that

throughout the body 2 the gradients of the angle of rotation have the

order of magnitude given by

Te ,K = 0(e1) as e 0 (K= 1,2,3) (4.20)

To continue the discussion, suppose that R: I at some material point

oX e 2, or that equivalently e =0 at °X. Then, at any other material

point X, the angle of rotation can be calculated from

f = -~ e X ) dS , (4.21) .
X

fi d

where dS is the arc length of an arbitrary curve C in the reference con-
figuration of 2, X = X~e is the unit tangent vector to C and the integra- ,

R'*
zion is performed along the curve joining and X. By means of the

"usual inequalities for integrals, from (4.21) we obtain an estimate

for the magnitude cf e in the form

1ei < i~ 0/ dKI IXKIdS TKK , (4.22)
x

0-

where (e and K are the values of 6 and X at some point on the curve,K TK K K

C, respectively, and where L is the length of the curve C joining X and X.

Since T are components of a unit vector and since the estimate (4.20)

holds throughout the body, from (4.22) we conclude that the angle e at

every point of .0 has the order of magnitude

0 = O(CI) as e- 0 , (4.23)

provided that R= I at some point X E . Recalling the power series

The existence of such a curve in A is ensured by the connectivity assump-
tion of the regionS in section 2.
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expansions

3 e e 2 +4sin e e + , cos e =1- + 4 (4.24)

it follows from the estimate (4.23) that

sin e = O(El) , cos e = 1 + O(E2) as 0. (4.2S)

Using (4.25) in the representation (2.13), we conclude that provided R= I

at X, the rotation tensor R satisfies
0..

R = I +O(S as E1÷o 0 (4.26)

Since by (4.5) the rotation was defined as R= I +0(E2), it fo'iows from

(4.26) that provided R is a unit tensor at some point °X rf the body,

quantities of 0(e2) are comparable to 0(i as ci÷0.

Thus far in the development of this section, the order of magnitude

of EK (and hence also of R or 6) has been regarded as independent of

that of the strain E. In order to relate the estimate of the rotation
tensor R in (4.26) or the angle of rotation 6 in (4.23) to the order of

magnitude Eo, an additional assumption must be made concerning the f
relationship between the orders of magnitude of E and E or equivalently

between e and E1" But, prior to such an undertaking, we need to dispose
0

of some geometrical preliminaries and definitions.

Consider now any unit vector v and rotate this by the rotation tensor

R through an anglo a 2'esulti ig in the vector R v. Since the proper

orthogonal tensor R is length preserving, the magnitude of v remains

unchanged upon rotation and we have

cos c = v R v , (4.27)

which represents the projection of the rotated vector R v along v (see the
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sketch in Fig. 1). With the u~.e of (2.13), it can be shown from (4.27)

that cos at is bounded from below by cos e in (2.14), i.e.

Cos a > o (4.28)

It may be noted here that the angle ar = if v is parallel to the unit

vector pi in (2.14), while a -6 if v is perpendicular to j.i.

To continue the discussion, let $ stand for a vector defined by (see

[also the sketch in Fig. 1)
R Rv- v or R v= V+a (4.29)

Keeping in mind that both v and R v are unit vectors, from the innerI

product of (4.29) with itself we arrive at

=1 12  -lv R v 1 -cos a~ (4.30)

which shows that is the difference between unity and the projection

of R v along v. Now, let 4,denote the angle that the vector makes with

v as indicated in Fig. 1. Then, by (4.29)1, we have

v I~cos (1 = - v -uR v) (4.31)

Since the right-hand side of (4.31) is -½l0I2 by (4.30 it follows that

cos 4, in (4.31) is not an independent quantity and is, in fact, given by

Cos 4 -1I

4.2 The special case of infinitesimal kinematics

Before proceeding further, it is instructive to consider the case of

classical infinitesimal kinematics in which both the strain and rotation

are small. Thus, we introduce the following

Details of the argument are given following (Bll) in Appendix B.
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Definition 4.1. Given E= 0(c) a proper orthogonal tensor R is

said to be an infinitesimal rotation with respect to e if for any unit

vector v, the vector 8 defined in (4.29) satisfies

O=o(e) as e ÷° . (4.32)
- 0 0

It follows at once from (4.32) and (4.30)2 that R is an infinitesimal

rotation in the sense of (4.32) if and only if

1 - v . R v = O(C ) as ° + 0 (4.33)
00

i.e., the projection of R v along v differs from unit by0(e ) as eo0

if and only if R is an infinitesimal rotation. Clearly, (4.33) can be

used to state an alternative definition of infinitesimal rotation which

is equivalent to (4.32).

Observing from (4.30)3 and (4.33) that cosa-1 + 0(E) as E -+0, the

inequality (4.28) together with the fact that a= 6 for some v imply that

cos e = l 0(oE) , sin 2 - 0(£ ) , sin = 0(%) ,
0 00

(4.34)
e =O(E) as e 00

Introduction of the approximation (4.34) into (2.14),2 yields

T 2T~0(P) , 0~ ( T S -, 0( o) as e 0 (4.35)
- 0 - 0 0

If R is an infinitesimal rotation with respect to e° everywhere in the

body, then in terms of the condition (4.7) we have m=2, n=0, k=- Z I,

and quantities of 0(e 2) are also of 0(E0) as +o0.
20
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It should be emphasized that implicit in the Definition 4.1 is the

assumption that the order of magnitude of R can be estimated in terms of

the order of magnitude of E. To avoid undue complications, we have post-

poned making explicit any relationship between e and eo but the conditions

under which R can be estimated in terms of E will be examined later. In

this connection, it may be recalled that in the usual kinematics of the

infinitesimal theory the restriction of smallness is imposed on the

relative displacement gradient H defined by (2.6); and then, it follows

at once that both the strain and the rotation are infinitesimal. The

approach in the Definition 4.1 differs from the usual in that so far no

restriction has been placed on the relative displacement gradient H, but

infinitesimal rotation is defined with respect toe

In the context of infinitesimal kinematics, we now state the following

Theorem 4.1. The relative deformation gradient H is of 0(r) as

4 -ý0 if and only if E-U-I=O(eo) as 40 and R is infinitesimal

rotation with respect to c in the sense of Definition 4.1.

Proof. Let the tensor U be specified by (4.11)2 and suppose that

ý,'V are given by (4.35) so that, after the neglect of terms of 0(2),

the rotation R= +O(Eo) as e 40. Then, by (2.1) the deformation gradient

F=I+(e 0) as E 40 and fI=0( 0) as e 00.
-. -- 0h0n--0o0

Conversely, if H defined by (2.6) is of 0(eo) as Eo0, then from

(2.3)2 and (2.6)1 we have

2
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U 2 1 + IH HT 0 2) as c 0 (4.36)

2
If terms of O(% ) are neglected as °-0 in (4.36), we have

U TI+ h(H+H I + O(%o as E -ý 0 (4.37)

Recall now that R * FU"I and, with the help of (4.37), obtain

R F (FI --i•(H+H T)" (I+H) (I. -• "H-4HT)

I+½(H-HTT I+ O(° as e 0 , (4.38)
0~~ 0 .Ti omlts•-

where terms of 0(e ) have been neglected as 0-O. This completes

proof.

It may be worth recalling that the strain gradients E K (el) as

C 10, in view of (4.2); and that subsequently the use of this measure of

smallness, along with (4.18) enabled us to establish the estimate (4.23)

for the angle of rotation e provided that R= I at some point X E S. The
- 0.

estimate (4.23) can be brought into correspondence with (4.34)4, which

results from Definition 4.1, if and only if functions of O(cI) are assumed

to be comparable to 0(e). In terms of the conditions stated immediately

after (4.4), we may choose k= 1, Z =1 so that any function of

0(C1) = 0(o) as e0 0O. With this additional assumption, we may now write

E,K 20(•o) as Eo0  0 (4.39)

and t1is is consistent with

e o 0 as -+ 0 (4.40)

provided R= I a* some point X E .
I. - 0-

. We are now in a position to state the fullowing
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Theorem 4.2. Given E~O(eo) and E, 2(co) as r- -0, the tensor R

associated with the deformation function X is an infinitesimal rotation

with respect to C0 to within a rigid body rotation.

Proof. Provided that R" I at some point 0X E R, the conclusion

(4.40) implies that R is an infinitesimal rotation with respect to co.

111us with the use of (2.13) and (4.35), to the order of' approximation

coniidered, the infinitesimal rotation is given by (I+ Q) as c o0.

Moreover, by Theorem 3.1 any other solution of (3.14) differs from (I +SI)
by a proper orthogonal tensor function of time (say R ) corresponding to

a rigid body rotation and we have

R = R (I +Q) as s -o 0 , (4.41)
~ 0 - - 0

subject to the condition that (I~+ S) : I at X - X or equivalently

II Q=0 R R at X = X ,(4.42)
-0- - 0

where (÷ as c 0+0 is defined in (4.35). This completes the proof.

It may bf, observed that in the present development, apart from rigid

bodiy rotation, the conclusion P = R - =O(C ) as e 00 is a derived result.

This is in contrast to the usual approach to infinitesimal kinematics,

where the infinitesimal nature of S1 (and also of E) is implied through an

assumption of smallness imposed on the displacement gradient H.

The restrictions in the statement of Theorem 4.2 are imposed on E and

ý,K (instead of on the usual displacement gradients) and for an explicit

calculation of the rotation tensor we need to return to (3.14). Alterna-

tively, in view of the representation (4.41), it will suffice to calculate

the skew-synuetric tensor Q and then R is determined. To see this,

introduce (4.39) into (4.13) and after neglect ot terms of O(Eo) as

C -0, obtain

30.
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AAT E (e e) - (e @ e)E- 0(o) as C + 0 (4.43)-K ý -K L 4 L ~K.L -o(C

But the expression for the gradient of R by (3.14) is RKR AK and

substitution from (4.41) results in

Mo-,K Io + M AK (4.44)

Since R is nonsingular and since Q- O(eo) and A 0 0(o) as -•o 0 by

(4.35). and (4.43), respectively, (4.44) gives

2 ýK A (4.45)£2 m,K

where terms of 0(e ) have been neglected. The tensor n can now be

determined as a solution of (4.45) subject to the condition (4.42).

With the use of (2.1), (4.11)2 and (4.41) we note that the deforma-

tion gradient is now given by

F a R (I+Q+E) as o* 0 , (4.46)

where terms of 0(%) have been neglected. In addition, by (2.6) and

(4.46) we also have

H =+ R (QI + E) as c -i 0 (4.47)

In the above expression, i,. is H - (R - I) and not H itself which is

infinitesimal with respect to E:

4.3 Small strain accompanied by moderate rotation

The foregoing development [between (4.32) and (4.47)] which began

with Definition 4.1 dealt with infinitesimal kinematics. We now return

to our main objective and introduce

Definition 4.2. G yen E=O(E), a proper orthogonal tensor R is
* The component form of Eqs. (4.45) are, of course, the same as those used

in the infinitesimal theory of motion mentioned in the first paragraph
of section 1.
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said to be a moderate rotation with respect to e if for any unit vector0|
v, the vector 8 defined in (4.29) satisfies

~as E 0 (4.48)S0( )0

It follows at once from (4.48) and (4.30)2 that R is a moderate rotation

in the sense of (4.48) if and only if (compare with (4.33)]

1 - v o R v a O() as e + 0 , (4.49)
-0 0

i.e., the projection of R v along v differs from unity by 0(c as E 0

in thb case of moderate rotation.

Observing from (4.30)3 and (4.48) that for moderate rotation:

cos a =1+ 0(F ) as e +0, the inequality (4.28) together with the fact

:os=l 0( 0ans
that au = for some v imply that

),snO0(€o '+ i eO~) ~ -0 . (4.50)COS 6-1I+0(eo sin" 6 - 0(c sin e= 0( o -'=O(E as s (.0

Clearly, (4.49) can be used to state an alternative definition of

moderate rotation which is equivalent to (4.48).

As in the Definition 4.1, we again observe that implicit in the

Definition 4.2 is the assumption that the order of magnitude of R can be

estimated in terms of E. Again to avoid undue complications, we have

postponed making explicit any relationship between e and e but the

conditions under which moderate rotation can be estimated in terms of

infinitesimal strain will be examined later. However, two aspects of

the conclusions (4.50) for moderate rotation may be noted here:

(1) The results (4.50) have been obtained with respect to eo and are

independent of EI d(fined by (4.2); and (2) the angle of rotation in

(4.50) is of 0(E' 2 ) in constrast to that of 0(%0) in (4.34) for infinitesi-

mal rotation. Thus, after substituting from (4.50) 1,3 in (2.14)1,2 and

32.



• 2 , , ... .. . . •. . .. . . . .. . . . . . - -.. . . . . - -'- m. i om -

neglecting terms of O(c /2, the functions ' and P in (2.13) for moderate

rotation are approximated according to

T YT . EO(") •T, C- =- -0 -~ - -0 (o

(4.51)
T T 20 - o(eo as e - 0.

0 as

It should be noted here that if R is a moderate rotation with respect to eo

everywhere in the body, then in terms of the condition (4.7) with m-2, nu0,

ku2, Z-l, quantities of 0(c2) are also of O(co) as eo+0.

We now state the following

Theorem 4.3. If E U - I- 0(% ) as e + 0 and R is a moderate rotation

in the sense of Definition 4.2, then the tensor H defined by (2.6) is of

O(E) as e +0. Conversely, if H e as e+0 and, in addition, if
S~the symmetric part of (2.6), i.e., H~ *H~ is of O(co)~ as eo ÷O, then

0 0

U - = 0(Co) and R is a moderate rotation with respect to S

Proof. We first prove the first part of the theorem. If

U- IE-O(e ) as Eo0 and R is a moderate rotation given by (2.13)

with D and Y estimated by (4.51), then recalling (2.1) we have

+F = I+ D++E. , C. a 0(Co)

(4.52)

0,"Y given by (4.51) as e ÷ 0
0

and H-0(c') by (2.6).

We niw turn to the converse part of the theorem. By assumption,

La2(e") and 1+H ,O(E) as e -0. Hence, substitution into (2.7)1

yields EzO(o)~ as +O0 and by (4.11)2we also have UrI+O()

Further, in order to obtain the desired estimate for R, from (2.1) we

have R= F U~ and from (4.11)3 we recall that

U I I -E - I -(H+H T+HTH) as ° . (4.53)- - - - ..- -4.S 0

Then, R can be expressed as
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-:; .. . ..... .... .. ... .. . . .. ..

R (I+H){I-½(H+HT +HTH)}

I - - H ) --H 7 H + ) . (4.54)

A close examination of (4.54) reveals that if we identify the skew-

symmetric 1j(H-HT) as T and the symmetric-I1HTH as D so that thest

quantities can meet the condition (4.51)3P then R in (4.54) can be

identified as moderate rotation. To show this, we recall that by

assumption

T TH H + 40(co) and H H + 0 ) as e ° 0 (4.55)
- - - -0 0

Thus, after forming the product Y ' ( 1j(H - HT)] (HHT) and neglecting

terms of Otc°J, we obtain

TT
t(H - E1)] ½(H - H ) (2HT+ 0(c0f(2H +0(r-)0

'"HT H ,(4.56)

which meets (4.51)3. Hence, R given by (4.54) is a moderate rotation and

the proof of the theorem is complete.

We recall once more that the strain gradientq EK = (El) as e I

in view of (4.2), and that the estimate (4.23) for the angle of rotation

e is also obtained with respect to E I' This estimate (4.23) can be

brought into correspondence with (4.50)4, which results from Definition

4.2, if and only if functions of 0(ci) are assumed to be comparable to

0o). In terms of the conditions stated following (4.4), we may choose

k-2, -= 1 so that any function of 0() O(c ) as o With this

additional assumption, we may now write

E =20(c) as e -0 (4.57)
~, ~ o
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and this is consistent with

e O(:e) as (4.58)

provided that R= I at some point X e S.

We now state a theorem concerning the order of magnitude of R:

Theorem 4.4. Given E= O(co) and Grad E~O(€) as e -0o, the tensor R

associated with the deformation function X is a moderate rotation with

respect to e to within a rigid body rotation. 1
Proof. Provided that R= I at some point X C , the conclusion (4.58) p

implies that R is a moderate rotation with respect to co in the sense of

Definition 4.2. Thus, with the use of (2.13) and (4.51) and to within

terms of 0(c ), the moderate rotation is given by

I + )+ Y as E • 0,
0

(4.59)

D and T specified by (4.51)1,2 J
Moreover, by Theorem 3.1 any other solution of (3.14) differs from (4.59)

by a proper orthogonal tensor function of time (say R ) corresponding to

a rigid body rotation and we have

0(4.60)

t and YP specified by (4.51)1,2

subject to the conditions that

S= 0 R =R at X= X (4.61)
. . . .. -0 0-.

and the theorem is proved.

It should be emphasized here that the approximations for moderate

rotation occur only in the functions D and Y' as specified by (4.51)
(51) ,2'
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The rotation R in (4.60) may in fact be large, in view of the presence of

R which represents a rigid body rotation. Indeed, it is the proper
-0

orthogonal quantity R TR which may be termed moderate rotation and not R.
-0-.

The restrictions in the statement of Theorem 4.4 are imposed on E and

and for an explicit calculation of the rotation tensor we need to

return to (3.14). Alternatively, in view of the representation (4.60), we

may calculate 0 and T to the order of approximation considered and then R

is determined. To show this, introduce (4.57) into (4.13) and after neglect

of terms of 0(% 3/ ) as e +0-, obtain

AK (e e " (e 0 L () as e - 0 (4.62)

Substitution o (4.60) into R, K which is obtained from (3.14),

F results in

R ( ÷ .K') = R (I+ +A)A (4.63)

But, with the use of the order of magnitude estimates (4.51)1,2 and (4.62),

after neglecting terms of 0(3/2) and remembering that R is nonsingular,
0 0

from (4.63) we obtain

ý.,+Y =A + A (4.64)

Since TK represents the skew-symmetric part of (4.64), we may write

,K = Ki+{( TK•K) " (TK÷ K )T)

(A + A). (A +T A
- ._K - K -_K

-K+i K2(T A (4.65)

where (4.62)1 has been used in obtaining (4.65)3. Given E (and hence A

(4.65)3 may be viewed as the differential equation for '; and, once TP is

36.



determined, ~ can then be found from (4.51)3.

It is useful to record here the expressions for the deformation

gradient F and the relative deformation gradient H associated with moderate

rotation. Thus, with the use of (2.1), (4.11)2, (4.60) and upon neglect of

terms of 0(e /2), the deformation gradient can be expressed as
-0

"F = R (I÷+ 0.+T+E) as e 0 0 (4.66)

Similarly, by (2.6) and (4.66), we have

H = (R0 - I), Ro (T + 4 + E) (4.67)

In view of the remarks made in the paragraph following (4.61), it should

be noted that in the above expression it is [H- (R- - I)] and not H itself

which is moderately large.

4.4 Construction of a motion which results in a properly invariant small
strain and moderate rotation.

From among all particles of 2, let Y be chosen as a pivot whose trans-

lation and rotation is specified (Casey and Naghdi 1981). Then, cor-

responding to any motion x, we can construct another motion X by removing

from X the translation and rotation of the pivot. Thus, we can write

(~t ) (Xo(x,t)R T -X(oX,t)}x= (X,t) R _X(X t)- t) + ox
-.. .. . . 0 .~ ~0o~ (4.68)

t = t-c ,

where X denotes the position vector of the pivot Y in the reference con-
O~

figuration K0 , R 0 = R(0X,t) is only a function of time and c is a real

constant. The configuration of 9 at time t in the motion X is K We

observe that (4.68) is of the form (2.9) with

T T
Q(t) RR , a(t) =" RTx(oX't) +oX , a =- c (4.69)

Then, with the use of (2.10), (2.11), (4.60) and (4.66), we easily conclude

that
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F =I÷+•D+÷+E as e 0
- -. 0

* . (4.70)

R :I+t+'s as E 0

and that

.C= C , U = U , E : E , E = E (4.71) .
- -. .. . (,K 7,K

In the configuration K, the relative displacement u =X -X, and the
rotation tensor R * are such that

"* *
u (oX,t ) - 0 , R (oX,t) I (4.72)

The expressions for Grad u u e are again of the form (2.6) but with

H replaced by

H u ®e = +W+E (4.73)
- .K .,K -

It is clear from (4.51)1,2) (4.11)1 and the right-hand side ot (4.73)2 that
u 0(* ) as -0. From this result and the fact that u vanishes at

I

X by (4.72)1, it follows that the displacement
* * .

u (X,t ) : O( 2 ) as 0 (4.74)

throughout the body Similar to (2.7)1, the strain measure E can be

calculated in terms of H so that
• * *T H*TH

*=½(H +H + H

•{U e +eK U + (U U)e e} (4.75)

It should bp noted that in the above formulae for infinitesimal strain,

The line of argument here is similar to that employed between (4.20)-
(4.23).
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* *T T Y
while both quantities H +H and H*T H are of 0(%E)~ H ~ 0(c ) as 0.- -- - 0I 0

It has been shown in the paper of Casey and Naghdi (1981, Theorem 3.1)

that two motions IX and 2ý of 9 differ by a rigid motion if and only if

= 2X i.e., by construction X remains unchanged if X is replaced by

X in (2.9). Thus, with (X+)* defined by [see section 3.2 of Casey and

Naghdi (1981)]

*(X~ = +(R) T ( +X ( -t x + oX, t+) + x (4.76)

and with c chosen equal to -a in (2.9), all quantities with respect to the

configuration K remain unaffected by an arbitrary (not necessarily small)

superposed rigid body motions and we conclude that

CX+) * * , +* * I
~ -X , ~ =F =- I+I+

R*= R - I +ý+ , H = H = +'Y+E , (4.77)

* .. * * ,•+*

~ ~ . . . ' ~ K ~,K

where (F+)* - - - --*.
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5. Invariance of constitutive equations with small strain accompanied

by moderate rotation

We briefly discuss here the invariance of constitutive equations (and

hence that of a complete theory) for small strain accompanied by moderate

rotation. Although the development of this section is specifically

carried out for the case of an elastic material, it will be clear that

our main conclusion reached holds for any material. The procedure for

constructing a properly invariant theory in the presence of moderate

rotation is similar to that used by Casey and Naghdi (1981) for an

infinitesimal theory of motion in which, apart from superposed rigid

body motions, both strain and rotation are small.

The notations for the mass density, in the configuration K, the

'*tt outward unit normal to the surface @R, the stress vector t acting on

39R and the Cauchy stress tensor T were introduced in section 2. We

denote the corresponding quantities in the motion X introduced in

(4.68), and in the configuration K by P ,n ,t and T , respectively.

Recalling that RT (X,t) = RT in (4.68) is a function of time only and plays
0! -0

the role of Q(t) in (2.9), as noted also in (4.69)1, it follows from

(2.16)1, (2.16)2, (2.17) and (2.18) that

T4

* 0 , n = X,t)n t R ,t ,

0 -o -. o-. -

(5.1)
• T

T U R X,t)T R (oX,t)

Similarly, associated with the motion (X+ ) defined by (4.67), we have

the quantities p , n , t and T+*. These quantities, with the help of

(5.1)1,2,3,4, (2.11) and (2.16)-(2.18) transform according to (Casey and

Naghdi 1981, section 3):
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p -p , n =n , t =t

(5. 2)

T (Q (t)Ro)T(t) A T Q T(t) o = T .

For an elastic material, let 02=--(X,t) denote the elastic strain

energy per unit mass in the configuration K, Also, let + and ' denote

the strain energy per unit mass in the configurations K+ and K , respec-
#4 *

tively. We assume that 'P =' and it then follows that , --P. The

nonlinear behavior of an elastic solid may be characterized by the

constitutive equation

T ½F{(2k+ LPT) FT (5.3)A

where tpi(E). We observe that in view of (2.10), (ý.16)i and the fact
+ +

that E.- E the value of T of the stress tensor given by

(5.3) for the motion X satisfies (2.18), so that (5.3) is a properly

invariant constitutive equation. The Cauchy stress T in the motion

Ac ASX has the form* A

!: T = F*{--, (-..)(FT (5.4)
•' ~ ~ E ýE ~

and satisfies (5.2) 4.

Suppose now that the motion is such that Ex.O(Eo) and E KO(0) as

S+0 and recall that for such a motion the deformation gradient is givenVo !

by (4.66). It then follows from the local equation for conservation of

mass, namely p det F-p , that for small strain p can be approximated as

P P1o + 0(eo) as E 0 , (5.5)

where p is the mass density in the reference configuration K •o Further,
A -

assume for simplicity that the strain energy 'P is quadratic in E so that
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3ip T} -,K E] ,(5.6)
DE tit

where J(is a constant fourth order tensor and (, (E]}T -. X[E]. With the

help of (5.6), (4.66), (4.11)10 (4.51), (5.5) and after neglecting terms

of O(% 3 as o0, from (5.3) we obtain

TT PRJC(E]R . (5.7)

After substituting (5.7) into (5.1)4, we have

[ T RT T R = poK[E] (5.8)
0 .-o-0 0--

[ . It is now clear that the constitutive equation (5.8) meets the require-

ment (5.2)4 and is properly invariant. As noted in subsection 4.4, the

method of construction of Casey and Naghdi (1981), which is also used in

the development of this section, removes from all motions the translation

and rotation at any particle Y of the body called a pivot. But, even in

the presence of moderate rotation, it can be demonstrated that it does not

matter which particle is chosen as pivot. Indeed, it is shown in Appendix C

that the theory in which the deformation gradient given by (4.66) is con-

structed with Y/ as pivot coincides, to within terms of 0(E 3/2 with that

having Y as pivot.

42.



Appendix A

A brief account of notation and mathematce;'. terminology used in the

paper is given at the end of section 1. In this -ppendix we collect

additional terminologies and mathematical results utilized in the

development of the paper.

Any linear mapping between a set of vectors and a set of second order

tensors will be regarded as a third order tensor. In particular, the

tensor product a 0 b % c of any three vectors a,b,c C V is a third order

tensor defined by (a 0 b 8 c)v = c 'v a 0 L, and we also define a product

(a @ b ® c)[u ® v] - (b. u)(c v)a, for any vector u,v E V. We note that

the tensor product between a second order tensor and a vector, i.e.,

T ® v or v 3 T for any second order tensor T and any vector v, is also

defined as a third order tensor. The product of a third order tensor and

I - a second order tensor is again a third order tensor defined by

(a® b® c)(u® v) = z.u(a® b® v) = (a® c)(u®b 0v)
S(Al)

(a9 b 3 c)T = a T b , T(a® b ® c) = (Ta) @bc b (Al

for any vectors a,b,c,u,v E V and any second order tensor T. Since the

transpose of a third order tensor is not uniquely defined, we introduce

three kinds of transpose distinguished, respectively, by superscript

TI,T 2 ,T).T Thus

TT
(a® b c) ma® (bac) =a( c b

ST
(a b ® c) 2 (a 8 b)T@ c =b ® a 8 c , (A2)

S b T3
- (a eb® c) = cab® a

for any vector a,b,c 6 V, and we note that the definition (A2) 3 involves
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the transposition of c and a. It is clear that as a consequence of these

definitions, our definition for the transpose TI3 can be related to those

for the transpose T1 and T2 . Keeping this in mind, it is convenient to
T3 T T2 T1 T2 T 1 T2introduce the abbreviationJ = (A- [ ] for a third order

tensor A.

The linear -apping from the set of second order tensors into itself

is a fourth order tensor. In particular, the tensor product a ( b 0 c 9 d

of any four vectors a,b,c,d E V is a fourth order tensor. It is useful to

record the relationship (a~ b O c 0 d) [u ® v) = (c~u) (d. v)ag b, which

T
* is a second order tensor. The transposeJT of a fourth order tensor.K is

defined by the relationship B.([A] = A .,T [B] for all secoild order

tensors A,B. Clearly, (a 8 b I c 3 d) = (c 8 d9 a @ b).

We discussed the component representation of second order tensors

in section 2. Similarly, for a third order tensor A or a fourth order tensor

"•Jwe may write A =J KLM!K)eLQeM andJX~=JC KLMNe Ke L ee N, where

SKLM !K [e L eM andJ(KLMN = (eK9-eL) " S [eM eN]'I

The gradient of a scalar-valued function ý(X) may be written as

Grad e = •XK. (A3)3 .K -

Similarly, the gradient of a vector-valued function v(X) and the gradient

of a second order tensor-valued function T(X) will be denoted by

I
F!

i

I



av
Grad v = eL @ e

- axK L Z.K

(A4)
aTL

Grad T b-e e 8 e zT 9e
K- !X L 4M -K ,K ZK

while their components can be written as

(Grad v)e = (V, ®9 = ) , V
M K ,K6KM 0 ,M

(AS)
(Grad T)eM ,K KM = T

KKKM 4.,M
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Appendix B

This appendix provides details of the calculations of several results

and formulae stated in sections 3 and 4. We begin by noting that the con-

ditions (3.10) or (3.11) are regarded s the system of differential equa-

tions for the determination of F from the knowledge of C. As such they

were obtained as necessary conditions. To show that they are also

sufficient, we consider the expression of the form

I
( 4iLFiM),K - PiL,K FM FiLFiM,K + (Bl)

Assume that FiL are the solutions of (3.10)2 Then, by direct substitution

of (3.10)2 on the right-hand side of (Bi), it follows at once that

U iLNiMK = LM,K ( B2) !

Thus, any solution FL to (3.10) satisfying the condition that FiLFiM C:: B2

at one point will have the property that F F -C everywhere. Moreover,

since the right-hand side of (3.10) is symmetric with respect to the indices

"(K,M), it follows that a solution F to (3.10) will also satisfy (3.6) and

this, in turn, ensures the existence of the deformation function X.

It was remarked following (3.11) that since U can be determined

uniquely from the knowledge of C, with the use of (2.1), we obtain the

differential equations (3.12) for the determination of the rotation R.

To show this, we substitute (2.1) into the expression on the left-hand side

of (3.10) and obtain

FiLFiM,K U RiNUNL(RipUpM) K * UNLUNM,K÷UNLRiNRiP,KUPM

or after rearrangement of terms (

iM iN,K UML(FiLFiPK UQLUQPK)UPN
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Next, we substitute from (3.10) on the right-hand side of (B3), make use

of CKL UKUML by (2.3) along with RTR =(RiR )e i9 e and obtain
(2.3)ML2 -,K (iM iN,K _M _N

(3.14) and (3.15). The component forms of these equations, namely

RT ½{-1UL~UKL -1
STK "{UML(UNLK" UNK L)+ (UMK'L" UMLK)ULN

UMP L" UQL, P) UQKUN)eM® eN (B4)

correspond to Eqs. (8)-(10) in Shield's paper (1973).

To obtain the necessary and sufficient condition for the existence of

R, we first recall that the necessary and sufficient condition for the

existence of the deformation gradient tensor F which satisfies (3.11) is that

FKL ',LK or 'iM,KL 'iM,LK (85)

Again substitute from (2.1), and after cancellation of identical terms,

(B5) becomes

O + UR U LKU +R ! (B6)

I Y,KL _ ,LK

Clearly for a given U, U~,KLU,LK and since U is nonsingular, it follows

from (B6) that the necessary and sufficient condition for the existence

of R is

R,KL : R,LK (B7)

Alternatively, we may obtain the conditions for the existence of R by

considering the required conditions for the existence of a solution of

(3.14). Thus, from (3.14) we write RKR A and after substitution from

(B5) or equivalently (B7) we obtain:

SAA- AA +A A 0 . (B8)
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This corresponds to Eq. (11) in Shield's paper (1973), which was obtained

as a special case of more general results discussed by Thomas (1934).

In order to verify the truth of the inequality (4.4), we first

observe that for real numbers a and b, O< a<b, the following two

inequalities hold:

1 1
n n n n

a < , a < . (Bb)

"Next, with the help of (B9) 2 , from the result (4.3) which holds for k,k

positive integers, we obtain c )/k< (I or o l/kZ/k and hence1I
n (l/k E/k)nr I1< cc' (BIO)l

Then, from the condition on Ih 1(2 K(E 11 given following (4.2), namely

nIlhlC1 (E •K <De as E1 -0, the inequality (4.4) follows from (BIO).

To verify the truth of (4.19), with the use of (4.18) consider the

scalir a RTRKK and observe the identities (no sum on K)

K ' P 0 )K ° K(,K° *K)

_K [(K,Kx ) 'Z 1 ]K ! '= (K (BII)
K" L (0,KXeL)YK = (aK" eL) 1,KxeLK) ( KX (K L)eL!K

= lKX K *YK

ýK !L -( L)YK = (K L) -.L !K) XK.K

Since (pyKcK) form a right-handed orthonormal triad, (BII), 2 vanish

identically and (Bll) 4 is equal to -1. In addition, since aK is directed
4-VK

along pK,(BII)3 vanishes also and the scalar K RTR, KK reduces to (4.19)

We next establish the validity of the inequality (4.28), where e is

the angle of rotation for the tensor R, and a is the angle between a unit
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vector v and the rotated unit vector R v. With the help of the representa-

tion (2.13), we have

cos a = V' (Rv) = (ji"v)2(1- cos e) +Cos e . (B12)

2Observing that (1- cos 8)>0, and (iH" v) >O, we conclude from (B12) that

cos ca cos e and (4.28) is verified.

I
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A-pendix C

In a recent paper, Casey and Naghdi (1981) have shown that a theory

in which both the deformation and deformation gradient are small can be

constructed so as to possess desirable invariant properties in that the

constitutive equations and the equations of motion are properly invariant

under arbitrary (not necessarily infinitesimal) superposed rigid body

motions. The method of construction is effectively such that they consider

the rotation at one material point, called the pivot Y, and then remove

from every point of the body this rotation obtaining a new configuration
'k *

K and then show that in the configuration K all constitutive results

are properly invariant. In the second part of their work, they demonstrate

that to the order of approximation of the kinematical result, it does not
matter which particle is chosen as pivot.

It is the purpose of the present appendix to show that the choice of

pivot is immaterial also in the presence of moderate rotation or more

specifically for (4.60), (4.70)1, (4.73) and (4.75). Temporarily, we

attach the subscripts Y and Y' to quantities F ,H , etc., when the pivots

Y and Y' are identified with material points whose position vectors are

X= OX, and X= X # JX, respectively, in the reference configuration K 0

Using (4.60) and (4.51), the rotation tensor at X1 is given by

R.-R(X',t) = R (I÷''+ ) + (Cl)

where

~ D (X',t) 0( ) as o 0
-0 0

(C2)

Y= 4(X ,t) yiT = 0(%o) T = 2D

Recall the form of Lhe rotation tensor in (4.60) and multiply the right-

Thand side by -y/ = ~I. With the help of (Cl), the tensor R can be

written as
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_y-0 - - -

_y/(I) (I + ( )

R.,(I + +0' +,T -)'r -, TI•)

Ii + [4, -+.0'-!4 I.T )*]} +c3)
+s [Y - T' -(' -TT)(7

Oas +0, where terms of 0(2o/ as e -)0 have been neglected. Consider

the quantities

T= T(X,t) (P +' IP lo T=

(c4)

F 119(X,t) Y' -,I''- ;Y ,', -, T') -TT

and observe that •'=0(•o) and ''0(•) as eo- 0. By direct calculation

-- 0 obsenve that--0 0
3/2'

after neglecting terms of O(% as +0, we conclude that
I

T Y71 20 as e 0 0 (CS)

In addition, both T and T-vanish at X= X/. Thus, (C3) has the form

R: Ry/(1+ 0+ T) ,
T~ !I

0-T O() as E 0 , O , , 0'(E=- 2T , (C6)
-0 o 0o as

.,, R(X',t) (X',t) T(X',t) - 0

Hence, we conclude that the form (4.60) remains unchanged by the choice

Y/ as the pivot,

From (4.66) and with the help of (CI) and (C4), we calculate

I
51.



TTT

(I+ / +'•~) RoRo(I+@+'1+E)~

= (I +ý+ý+T -T-T +E) I
= I+'D+,V+E , (C7)

where terms of 0(£ o32) as o-* have been neglected. Thus,

F * /-I = @÷+E (C8)

Using (C8), we again have

*T

!i(.Hy,+Hy, +Hy, Hy/) =E~ (C9)

Hence, (4.70),, .4.73) and (4.75) are not affected by the choice of I
p pivo t.

In the above, we have E ) (c , as Fo •0. it should be clear that

simirar procedures can be used for the case in whichE =0(%o) as eo-0.

Before closing this appendix, we consider the consequence of the change

cf pivot Y on the stress tenso;r T defined by (5.7). When a particle Y',

different from Y, is chosen as pivot, (5,8) becomes

where RPy= R (X= X/',t) is a function of time only. Keeping in mind that

.K[E] =O(£o* as -)0, with the help of (Cl), (C2), s5.7) and (S.8), to the

order of approximation considered we obtain
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* ~ f + ' RT T•y, I + PoT " ')% -~~o [E]%R,( +oD"'" T')

- poK [E] T (C11)

.3/2.0haebenglcdwhere in writing (Cll) 2 terms of O 3/° 2 as 1o
Hence, to within terms of 0(c3/2) T* is :maffected by a change of

0
pivot.
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Fig. 1 A sketch showing the vector R v obtained by

rotating a unit vector v through an angle av

and the vector representing the difference

of v and the rotated vector R v.
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